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Abstract

The inherent uncertainty in travel forecasting models — arising from potential and unkown errors in input

data, parameter estimation, or model formulation — is receiving increasing attention from the scholarly and

practicing community. In this research, we investigate the variance in forecasted traffic volumes resulting

from varying the mode and destination choice parameters in an advanced trip-based travel demand model.

Using Latin hypercube sampling to construct several hundred combinations of parameters across the plau-

sible parameter space, we introduce substantial changes to implied travel impedances and modal utilities.

However, the aggregate effects of of these changes on forecasted traffic volumes is small, with a variance of

approximately 1 percent on high-volume facilities. It is likely that in this example — and perhaps in others

— the static network assignment places constraints on the possible volume solutions and limits the practical

impacts of parameter uncertainty. Further research should examine the robustness of this finding to other

less constrained networks and to activity-based travel model frameworks.
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1. Introduction

The inherent accuracy and uncertainty in travel forecasting models is receiving increasing attention from

the scholarly and practicing community. Given that such models are used in the allocation of billions of

dollars of infrastructure financing each year, the financial risks for inaccurate or imprecise forecasts are high

(Flyvbjerg et al., 2005; Voulgaris, 2019).

Transportation demand forecasting models, like other mathematical-statistical models, might be abstracted

to the following basic form,
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𝑦 = 𝑓(𝑋, 𝛽)

where 𝑦 is the variable being predicted based on input data 𝑋, moderated through a specific functional form

𝑓() and parameters 𝛽. Three general sources of error may lead a forecast value ̂𝑦 to differ from the “true”

or “actual” value of 𝑦 (Rasouli & Timmermans, 2012):

1. The input data 𝑋 might contain errors, due to inaccuracies in the base year, or an inaccurate projection

of land use, petroleum price, or other key input variable. This was among the primary issues identified

by Hoque et al. (2021) in a historical analysis of the accuracy of travel forecasts.

2. The model form 𝑓() may be improperly specified. Variables that play a major role in travel behavior

may not be included due to lack of information, or the unobserved error components may have a

different correlation than was assumed during model development. A detailed description of specifying

mode choice model variables and nesting of error structures is given by Koppelman & Bhat (2006).

3. The parameter estimates ̂𝛽 of the “true” parameters 𝛽 may have incorrect values. This may be because

the parameters were estimated on an improperly specified model 𝑓(), or because the estimation dataset

was improperly weighted.

Of these potential sources of error, only the third is substantively addressed in classical statistics. The stan-

dard errors of the model parameter estimates in a theoretical perspective address the parameter uncertainty

question to a great degree. Yet even this source of uncertainty has been largely ignored in transportation

forecasts, and model development documentation often elides the variance in these values completely (Na-

tional Academies of Sciences, Engineering, and Medicine., 2012). Zhao & Kockelman (2002) examined the

effects of this parameter uncertainty in a trip-based model of a contrived 25 zone region, but a systemic

analysis of this uncertainty in a practical model is not common.

In this research, we investigate the uncertainty in traffic forecasts resulting from plausible parameter

uncertainty in an advanced trip-based transportation demand model. Using a Latin hypercube sampling

(LHS) methodology, we simulate one hundred potential parameter sets for a combined mode and destination

choice model in Roanoke, Virginia, USA. We then assign the resulting trip matrices to the highway network

for the region and evaluate the PM and daily assigned traffic volumes alongside the variation in implied

impedance and accessibility.

This paper proceeds first with a description of the model design and simulation sampling methodology in

Chapter 3, followed by a discussion of the variation in mode, destination, and traffic performance measures

in Chapter 4. The paper concludes in Chapter 5 with a summary of the key findings alongside a presentation

of limitations and related indications for future research.
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2. Literature Review

Uncertainty has been examined in various ways over the last two decades, and is becoming increasingly

important for researchers. This review looks at why uncertainty is important to evaluate in transportation

demand models, and research that has been done to evaluate uncertainty. Rasouli & Timmermans (2012)

has an extensive literature review on this topic. An overview of the literature and which source of uncertainty

they evaluate can be found in Table 1.

Table 1: Studies of Forecasting Uncertainty

Reference Uncertainty Source(s) Evaluated

Rodier & Johnston (2002) Input Data

Zhao & Kockelman (2002) Input Data & Parameter Estimates

Clay & Johnston (2005) Input Data & Parameter Estimates

Flyvbjerg et al. (2005) Model Form

Armoogum et al. (2009) Model Form

Duthie et al. (2010) Input Data & Parameter Estimates

Welde & Odeck (2011) Model Form

Yang et al. (2013) Input Data & Parameter Estimates

Manzo et al. (2015) Input Data & Parameter Estimates

Petrik et al. (2016) Input Data & Parameter Estimates

Petrik et al. (2020) Model Form & Parameter Estimates

Hoque et al. (2021) Input Data

Model accuracy is the basis for why uncertainty of input data and/or parameter estimates are important

to study. Travel forecasters have always been cognizant of the uncertainty in their forecasts, especially as

project decisions are made using these models, often with high financial impacts.

Flyvbjerg et al. (2005) collected data from various forecasting traffic models with an emphasis on rail

projects. They used the forecast data for a given year and the actual value that was collected for the same

year. Their study found that there is a statistical significance in the difference of the estimated and actual

values. Rail projects are generally overestimating passenger forecasts by 106%, and half of road projects

have a traffic forecast difference of plus or minus 20%. They did not identify where this inaccuracy came

from, but they identified that it was important for future research.

Armoogum et al. (2009) looked at uncertainty within a forecasting model for the Paris and Montreal

metropolitan regions. The sources of uncertainty analysed were calibration of the model, behavior of future
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generations, and demographic projections. A jackknife technique, rather than sampling methods, was used

to estimated confidence intervals for each source of error using multiple years of analysis. This technique is a

way to reduce the bias of an estimator and permits the estimation of confidence intervals to produce variance

estimates. They found that the longer the forecasting period was, the larger the uncertainty. Generally the

model forecast within 10-15%, reaching higher percentage ranges for variables with small values or small

sample sizes.

Welde & Odeck (2011) compared actual and forecast traffic values for 25 toll and 25 toll free roads in Norway.

They evaluated the accuracy of Norwegian transportation planning models over the years. Generally traffic

models overestimate traffic. This study found that toll projects, on average, overestimated traffic, but only

by an average of 2.5%. Toll free projects, however, underestimated traffic by an average of 19%. They

concluded that Norwegian toll projects have been fairly accurate, with a probable cause coming from the

scrutiny that planners get when developing a toll project. A similar scrutiny should then also be placed on

toll free projects as they are significantly less accurate.

These articles show that models have errors which effects traffic projections by a significant amount. These

articles identified that error existed but did not quantitatively identify the source of the error. The most

researched error source has been on model form but that research has mostly been excluded in this review

as it is not the main focus of this research. The second most researched form has been on input data.

Chronologically, Rodier & Johnston (2002), Zhao & Kockelman (2002), Clay & Johnston (2005), Duthie et

al. (2010), Yang et al. (2013), Manzo et al. (2015), and Petrik et al. (2016) have all researched input error,

with all but the first also looking at parameter estimate error as well. Parameter estimation error has been

the least researched source of uncertainty, where there have been no studies focused only on that source of

error. Petrik et al. (2020) looked at parameter estimates, but with a focus also on model form error. The

details of each study are described below in chronological order.

Rodier & Johnston (2002) looked at uncertainty in socioeconomic projections (population and employment,

household income, and petroleum prices) at the county-level for the Sacramento, California region. They

wanted to know if the uncertainty in the range of plausible socioeconomic values was a significant source of

error in the projection of future travel patterns and vehicle emissions. They identified ranges for population

and employment, household income, and petroleum price for two scenario years (2005 and 2015). The ranges

varied based on the scenario year and the socioeconomic variable. They changed one variable at a time for

a total of 19 iterations of the model run for 2005 and 21 iterations for 2015. Their results indicated that

the error in projections for household income and petroleum prices is not a significant source of uncertainty,

but error ranges for population and employment projections are a significant source for changes in travel

and emissions. The input data of population and employment were a significant factor to the model result

uncertainty.
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Zhao & Kockelman (2002) looked at the propagation of uncertainty through each step of a trip-based

travel model from variation among inputs and parameters. This analysis used a traditional four-step urban

transportation planning process (trip generation, trip attraction, mode split, and trip assignment) on a

25-zone sub-model of the Dallas-Fort Worth metropolitan region. Monte Carlo simulation was used to vary

the input and parameter values. These values were all ranged using a coefficient of variation (𝑐𝑣) of 0.30.

The four-step model was run 100 times with 100 different sets of input and parameter values. The results of

these runs showed that uncertainty increased in the first three steps of the model and the final assignment

step reduced the compounded uncertainty, although not below the levels of input uncertainty. The authors

determined that uncertainty propagation was significant from changes in inputs and parameters, but the

final step nearly stabilizes the uncertainty to the same amount as assumed (0.30 𝑐𝑣 assumption with a 0.31

𝑐𝑣 in the results of trip assignment).

Another study that looked at input data uncertainty was Clay & Johnston (2005). These researchers varied

three inputs and one parameter to analyze uncertainty of outputs on a fully integrated land use and travel

demand model of six counties in the Sacramento, California region. The variables used for analysis were

productions, commercial trip generation rates, perceived out-of-pocket costs of travel for single occupant

vehicles, and concentration parameter. Exogenous production, commercial trip generation rates, and the

concentration parameter were varied by plus or minus 10, 25 and 50%, while the cash cost of driving was

varied by plus or minus 50 and 100%. This resulted in 23 model runs, one for each changed variable and one

for the base scenario. Their research found that any uncertainty in the inputs resulted in large difference in

the vehicle miles traveled output, although this difference was a lower percentage than the uncertainty in

the input.

Duthie et al. (2010) evaluated uncertainty at a different level. They use a small generic gravity-based land

use model with the traditional four steps, using a coefficient of variation of 0.3 from Zhao & Kockelman (2002)

for input and parameters, although using antithetic sampling. In this sampling method, pairs of negatively

correlated realizations of the uncertain parameters are used to obtain an estimate of the expected value of

the function. The uncertainty was evaluated on the rankings of various transportation improvement projects.

They found that there are a few significant differences that arise when changing the input and parameter

values that result in different project rankings, and thus neglecting uncertainty can lead to suboptimal

network improvement decisions.

Yang et al. (2013) evaluated a quantitative uncertainty analysis of a combined travel demand model. They

looked at input and parameter uncertainty also using a coefficient of variation of 0.30. Rather than using a

random sampling method for choices they used a systematic framework with a variance-covariance matrix.

Their research found that the coefficient of variation of the outputs are similar to the coefficient of variation

of the inputs, and that the effect of parameter uncertainty on output uncertainty is generally higher than
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that of input uncertainty. This finding contradicts the finding of Zhao & Kockelman (2002). The authors

concluded that improving the accuracy of parameter estimation is more effective that that of improving

input estimation as they found that in most steps of the model, the impact of parameter uncertainty was

more important that that of input uncertainty.

Manzo et al. (2015) looked at uncertainty on model input and parameters for a trip-based transportation

demand model in a small Danish town. They used a triangular distribution with LHS to create the range

in parameters, and using the information from Zhao & Kockelman (2002) they also used a coefficient of

variation of 0.30 and 100 draws, choosing these values at they had been previously used. Their addition to

the research of uncertainty, was by examining uncertainty under different levels of congestion. Their research

found that there is an impact on the model output from the change in input and parameter uncertainty

and requires attention when planning. Also, model output uncertainty was not sensitive to the level of

congestion.

Petrik et al. (2016) evaluated uncertainty in mode shift predictions due to uncertainty from input param-

eters, socioeconomic data, and alternative specific constants. This study was based on a high-speed rail

project in Portugal as a component of the Trans-European Transport Network. They collected survey data

and developed discrete choice models. The authors created their own parameter values from the collected

data, obtaining the mean or “best” value from the surveys and the corresponding t-statistic. With these

they generated 10,000 samples each of parameter values, socioeconomic inputs, and mode-specific constants,

using bootstrap re-sampling, Monte Carlo sampling, and triangular distribution methods respectively. The

authors found that variance in alternative specific attributes is the major contributor to output uncertainty

in comparison to parameter variance or socioeconomic variance. Socioeconomic data had the least contri-

bution to overall output variance, and there was a relatively insignificant mode shift due to variability in

parameters.

Petrik et al. (2020) used an activity based microsimulation travel demand model for Singapore to evaluate

model form and parameter uncertainty. This model has 22 sub-models and 817 parameters. The authors

determined which of the 817 parameters the sub-models were most sensitive to and applied a full sensitivity

analysis of the top 100 of the parameters, preserving correlations. Using the mean parameter value and the

standard deviations they had for all of them they used Latin hypercube sampling with 100 draws to look at

the outcomes of the change in each parameter value. Different sized samples of the model population were

also considered in their research. They found that of the 100 most sensitive parameter values, the outcome

coefficient of variation varied from 3% to 49%. The variance of the parameter variables did not exceed 19%,

and thus the results from the parameter uncertainty were higher than the variance in the parameters. They

also found that the results of the parameter uncertainty was higher than simulation uncertainty.
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In transportation demand models, when uncertainty is analysed, most research to this point has focused

on input uncertainty or model forms, rather than parameter estimate uncertainty (Rasouli & Timmermans,

2012). Of the 12 articles in this review, two look at input data as the only focus of their uncertainty

research, three focus on model form uncertainty, one looks at both model form and parameter estimate

uncertainty, and six focus on both input data and parameter estimate uncertainty. No researchers have

looked at parameter estimate uncertainty as the only source of error in their models. When parameter

uncertainty has been examined in existing literature, it is often in conjunction with input errors, or on

small and non-practicing models. No studies that we could identify have used real models for their analyses.

Uncertainty research is needed as transportation demand models provide estimates and forecasts for decision

and policy makers. An inaccurate model or large output variance could change what decisions are made and

when (AEP50 Committee on Transportation Demand Forecasting, 2023). Thus there is a critical research

need for a detailed exploration of parameter estimation uncertainty in a practical travel model.

3. Model Design and Methodology

3.1. Model Design

To examine the effects of parameter input sensitivity, we adapted a trip-based travel demand model from

the Roanoke Valley Transportation Planning Organization (RVTPO). The RVTPO model provides an ideal

testing environment for this research because it uses an integrated mode and destination choice framework

common in more advanced trip-based models. At the same time, its small size (approximately 215 zones)

means the entire model runs in a few minutes and thus allows for efficient testing of multiple model runs.

The total passenger trips 𝑇 traveling from zone 𝑖 to zone 𝑗 on the highway in a period 𝑡 is

𝑇𝑖𝑗𝑡 = 𝑃𝑖 ∗ 𝒫auto(𝛽, 𝐶𝑖𝑗𝑡) ∗ 𝒫𝑗(𝛾, 𝐴𝑗, 𝑀𝐶𝐿𝑆𝑖𝑗𝑡) ∗ Δ𝑡 (1)

where 𝑃 is the productions at zone 𝑖; 𝒫car is the car mode choice probability determined by utility parameters

𝛽 and the travel costs 𝐶 between 𝑖 and 𝑗 at time period 𝑡; 𝒫𝑗 is the destination choice probability of choosing

destination 𝑗 given the utility parameters 𝛾, attractions 𝐴, and the impedance as the mode choice model

logsum 𝑀𝐶𝐿𝑆𝑖𝑗𝑡. A time-of-day and direction factor Δ finalizes the total assigned trips.

The productions 𝑃𝑖, and attractions 𝐴𝑗 were extracted from the RVTPO Model and held constant. The

attractions are determined from the socioeconomic (SE) data. The SE data included information by TAZ

for the total population, number of households, total workers, and workers by employment type. The trip

productions are organized by TAZ and trip purpose. The trip purposes used in this model are Home Based
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Table 2: Choice model parameters

Variable HBW HBO NHB

Mode Choice Coefficients

In-vehicle travel time 𝛽𝑖𝑣𝑡𝑡 -0.0250 -0.0150 -0.0200

Travel cost 𝛽𝑡𝑐 -0.0016 -0.0024 -0.0025

Walk distance 𝛽𝑤𝑑 -0.0625 -0.0375 -0.0500

Auto operating cost (cents/mile) 𝛽𝑎𝑐 13.6000 13.6000 13.6000

Mode Choice Constants

Transit constant 𝑘𝑡𝑟𝑛 -0.3903 -1.9811 -2.2714

NonMotorized constant 𝑘𝑛𝑚𝑜𝑡 -1.2258 -0.3834 -0.8655

Destination Choice Parameters

Households 𝛾ℎℎ 0.0000 1.1657 0.5664

Other + Office 𝛾𝑜𝑡ℎ+𝑜𝑓𝑓 0.0000 0.8064 0.5626

Office 𝛾𝑜𝑓𝑓 0.4586 0.0000 0.0000

Other 𝛾𝑜𝑡ℎ 1.6827 0.0000 0.0000

Retail 𝛾𝑟𝑒𝑡 0.6087 2.2551 5.1190

Work (HBW), Home Based Other (HBO), Non-Home Based (NHB), Commercial Vehicles (CV), Internal-

External (IXXI), and External-External (XX). Only the first three are analysed, but all of the purposes are

assigned to the network. CV, IXXI, and XX trips were kept fixed for this analysis.

The two parameter vectors 𝛽 and 𝛾 describe the mode choice model and destination choice model coeffi-

cients, respectively. Mode choice estimates how many trips from 𝑖 to 𝑗 will happen on each available mode

𝑘.This model analyses three modes of transportation: auto, non-motorized, and transit. The mode by which

a trip is made is determined by calculated utilities for the three modes. These utilities take inputs from

parameter values and time and distance skims 𝑋. Skims are either the time or distance to travel between

zone pairs. Travel time for auto used the single occupancy vehicle peak time, non-motorized travel time

used the distance skim multiplied by a factor of average walking speed (3 mph), and transit time used the

walk to bus peak time. The mode choice parameters (constants and coefficients) were also obtained from

the RVTPO model. These values are shown in Table 2.
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The utility equations for the mode choice model are as follows:

𝑈𝑎𝑢𝑡𝑜 = 𝛽𝑖𝑣𝑡𝑡 ∗ 𝑋𝑎𝑢𝑡𝑜 + 𝛽𝑡𝑐 ∗ 𝛽𝑎𝑐 ∗ 𝑋𝑑𝑖𝑠𝑡

𝑈𝑛𝑚𝑜𝑡 = 𝑘𝑛𝑚𝑜𝑡 + 20 ∗ 𝛽𝑤𝑑 ∗ 𝑋𝑛𝑚𝑜𝑡

𝑈𝑡𝑟𝑛 = 𝑘𝑡𝑟𝑛 + 𝛽𝑖𝑣𝑡𝑡 ∗ 𝑋𝑡𝑟𝑛

These utilities are used to calculate the MCLS by:

𝑀𝐶𝐿𝑆𝑖𝑗 = ln (∑
𝑘∈𝐾

𝑒𝑈𝑖𝑗𝑘) . (2)

If the distance was greater than 2 miles, non-motorized travel was excluded.

This logsum value is then used as the primary impedance for a destination choice model (Ben-Akiva &

Lerman, 1985). Destination choice estimates travel patterns based on mode choice, trip generators (workers

and households), and destination choice parameters. These parameter values are also shown in Table 2. The

destination choice utility is the primary impedance (mode choice logsum value) plus the natural log of the

size term, where the sized term is calculated as:

𝐴𝑗 = 𝛾ℎℎ ∗ HH + 𝛾𝑜𝑓𝑓 ∗ OFF + 𝛾𝑟𝑒𝑡 ∗ RET + 𝛾𝑜𝑡ℎ ∗ OTH + 𝛾𝑜𝑡ℎ+𝑜𝑓𝑓 ∗ OFFOTH (3)

HH is the total households in zone 𝑗. OFF, RET, and OTH are the jobs in zone 𝑗 by employment type

office, retail, and other respectively. The destination choice utility is then transformed into a destination

choice logsum value with:

𝐷𝐶𝐿𝑆 = ln (∑
𝑗∈𝐽

𝑒ln(𝐴𝑗)+1∗𝑀𝐶𝐿𝑆𝑖𝑗) (4)

The probability of both the mode choice and destination choice are calculated using the exponentiated

utility divided by the corresponding logsum. These probabilities in conjunction with the trip productions

can calculate the number of production-attraction (PA) trips between each zone by each mode and purpose.

The auto trips are calculated by multiplying the probability of the destination by PA pair, the productions

for each origin, and the probability of an auto mode choice by PA pair. This results in PA auto trips. The

same process is followed for the other two modes. These PA trips are converted into origin destination

(OD) trips by multiplying the trips by corresponding time of day factors (see #eq-trips). These trips are

calculated using Bentley’s CUBE and the RVTPO model. The trips, by time period, are assigned to the

highway network by the shortest path by time using free flow speed and with link capacity as a restriction.

3.2. Uncertainty Design

Within the mode and destination models there exists uncertainty within the parameters in Table 2. Sam-

pling methods can take the defined uncertainty and choose potential parameter values within the possible
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range. Two common methods for parameter sampling include, Monte Carlo (MC) simulation and Latin

hypercube sampling (LHS). MC simulation draws independently from multiple distributions, while LHS

makes draws that cover the parameter space more efficiently and can capture the joint distribution between

two or more parameter values (Helton & Davis, 2003). As a result, LHS can reduce the number of draws

needed to fully re-create the statistical variance in a model, but the amount of reduction is unknown and

may not be universal to all problems (Yang et al., 2013).

With the trip-based model described above, MC and LHS methods were used to develop alternative

parameter sets to evaluate uncertainty. To identify a standard deviation for each parameter, a coefficient

of variation was used. A set coefficient of variation of 0.10 was used for the four mode choice coefficients

and the destination choice parameters. The mode choice constants were kept the same across all iterations.

Literature had identified a coefficient of variation of 0.30, but for this analysis that caused an unrealistic

value of time, and thus it was changed to be 0.10 (Zhao & Kockelman, 2002). Value of time is a ratio in

units of money per time that should be compared to the regional wage rate. Using a 𝑐𝑣 of 0.30 the value

of time range was from $2 to $32 /hr, whereas using a 𝑐𝑣 of 0.10 the range was $6 to $14 /hr. The latter

seemed more rational because it is related to wage rates and thus a 𝑐𝑣 of 0.10 was used for our analysis. The

standard deviation was equal to 0.10 multiplied by the mean, where the mean values in this situation are

the base scenario parameters (as identified in Table 2 ).

The MC random sampling uses the R function of rnorm. LHS uses the lhs package in R. Since this package

only chooses variables on a zero to one scale, the values given use a function to put the random sampling

on the right scale needed for the given parameter. The full code for both methods can be found in a public

GitHub repository. One hundred and 600 draws of random samples for both methods are generated. With

these generated parameters, the mode choice model step was run for every set of input parameters for each

purpose. The average MCLS value for each run was determined to compare each continuous draw. This

allowed us to see how many iterations of which sampling type would be sufficient to show a full range of

possible outcomes.

The parameters generated were compared for both sampling methods. Figure 1 shows the distributions

for the HBW parameters when using 100 and 600 draws. These distributions show that LHS gives normally

distributed parameters with fewer draws than MC sampling: at 100 draws LHS shows a nearly perfect

normal distribution, where there are some discrepancies for the MC generated parameters. These Figures

show that LHS is likely to estimate the full variance of the results with fewer draws.

To determine if LHS is effective at a reasonable amount of iterations, the cumulative mean and the cumula-

tive standard deviation of the average MCLS value for every zone (see Equation 2 ) was calculated for each

additional draw for both sampling methods. MCLS is an impedance term which is an important value for
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Figure 1: Sampled mode and destination choice parameters for HBW trip purpose.
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destination choice and region routing. The average MCLS, 𝑥, was used as a measure of outcome possibilities

to simplify a complex term as a single value to compare by across all iterations. The cumulative mean is

calculated as:

𝜇𝑖 = 𝑥1 + ... + 𝑥𝑖
𝑛 (5)

and the cumulative standard deviation is calculated as:

𝑆𝐷𝑖 = √∑(𝑥𝑖 − 𝜇𝑖)2

𝑛 − 1 . (6)

The cumulative mean shows how the average MCLS stabilizes across each iteration, and the cumulative

standard deviation is used to show the 95% confidence interval of that mean. When the cumulative mean

for the draws stabilizes, that shows that the amount of generated parameters has captured the possible

variance of the results. This is shown for two of the three trip purposes in Figure 2.

For all three trip purposes, both sampling methods had a stabilized mean by 100 draws. The LHS methods

standard deviation ribbon was generally thinner than the MC method. From the narrowed cumulative

standard deviation, and that the parameter values are better normally distributed when using LHS, that

method of sampling was used for the assignment analysis of the model. Since LHS captures the possible

variance at a small enough number of iterations, it can be used for large transportation demand models.

From these results it was decided to use 100 LHS samples parameters to evaluate uncertainty within each

step of the model. The next chapter includes the results of applying these sampled parameters to the travel

demand model.

4. Sensitivity Analysis Results

Each of the 100 LHS parameter draws was applied to the RVTPO model, generating mode choice utilities,

destination choice utilities, and trip matrices for each draw. The resulting uncertainty can then be quantified

using the outputs from the trip-based model. This section will first look at the uncertainty of trips by mode,

and how the mode split changes when the parameters vary. Then uncertainty will be quantified using the

highway assigned trips, and how link volume changes across each draw. The results will then be summarized.

4.1. Mode Choice Trips

Uncertainty can be evaluated by looking at how mode choices change. The total number of trips by

purpose are fixed, but the number of trips by each mode changes as a result of mode choice, combined with

the availability of modes in the travel time skims. Table 3 lists the base trip amount by mode and purpose. It

also lists the the average number of trips across all 100 iterations, with the corresponding standard deviation
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Figure 2: Average mode choice logsum (impedance) cumulative mean and 95% confidence interval with 100 and 600 draws.
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Table 3: Coefficient of Variation of Trips by Mode

Base Mean SD 𝑐𝑣

HBW

Auto 103320 103298 537.07 0.0052

Non-Motorized 1103 1105 50.38 0.0456

Transit 13254 13274 566.01 0.0426

HBO

Auto 250489 250475 453.11 0.0018

Non-Motorized 4310 4316 235.24 0.0545

Transit 9276 9283 363.09 0.0391

NHB

Auto 60212 60209 78.28 0.0013

Non-Motorized 736 737 35.77 0.0485

Transit 1576 1579 74.89 0.0474

and coefficient of variation. For HBW trips there are 103,320 auto trips. Across all 100 iterations there is a

mean value of 103,298 trips with a standard deviation of 527.07. This results in a coefficient of variation of

0.0052 or 0.52% variation in the number of auto trips. The other modes of transportation are included and

similar patterns can be seen in HBO and NHB. The results listed in the table show that the variation of the

output trips - by mode and purpose - are less than the input variation (as all 𝑐𝑣’s are smaller than 0.10).

This confirms previous research that the outcome variance is less than or near the parameters variance (Clay

& Johnston, 2005; Zhao & Kockelman, 2002). In all three purposes that were evaluated, the coefficient of

variation in auto trips are lower than transit or non-motorized trips, meaning that there is greater confidence

in the models accuracy to generate auto trips. The input parameter variability has a smaller effect on auto

trips than on trips on the other modes.

The variation among mode choices can be visualized graphically using a density of a scaled change in trips

by mode. Figure 3 shows density plots for HBW trips by mode for 12 zones – the zones are divided into

three volume categories: low is less than 200 trips per zone, mid is 200 to 700 trips per zone, and top is

greater than 700 trips per zone – and four zones are randomly selected from each volume category. Zones

that do not have any transit accessibility have been excluded. Those zones have very high density in auto

trips as with the ability to choose transit was removed, the choice to choose auto was more certain. The

zones included in Figure 3 all have greater certainty in auto trips, as the change in trips across all 100

iterations is relatively small. This reinforces the previous claim that the model has more confidence in auto
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trips than the other modes. It is also important to note that the modes are correlated to each other. In

zones with a greater confidence in one mode, the other modes are more confident as well. Since the number

of trips by origin zone are held constant, when there are an increase in trips on one mode there must be a

decrease in trips on one or both of the other modes. Also, the distribution of non-motorized trips is similar

for every zone suggesting that generally, the most variable mode is non-motorized trips which you can see

in the spread of the graphic. This is also verified using Table 3 as the 𝑐𝑣 is largest for the non-motorized

mode across all three purposes.

4.2. Link Volume

Highway volumes are the most commonly used output of a travel model. Uncertainty can additionally

be evaluated by looking at how assigned link volume varies across iterations. Figure 4 displays variation

in forecast link volume spatially. This shows that the links with the highest standard deviation in forecast

volume are high-volume roads including freeways and principal arterials where the majority of traffic is

internal to the study region. Although these links have the largest standard deviation, when compared to

the total volume of the road, the variation is in reality very small. A standard deviation of 400 vehicles on

a road with 40,000 total vehicles corresponds to a small variation (1%).

The highway assignment results can be grouped by facility type to show how the coefficient of variation

compares to link volume. Figure 5 shows the coefficient of variation for the daily volume assigned to each

network link, across the 100 draws, plotted against the mean forecast link volume for each link. The values

are the volume for 100 randomly sampled links for each facility type. The plots shows that for the high-

volume roads such as major arterials and freeways, the coefficient of variation converges to approximately

0.01, or about 1% of the road’s total forecast volume. For lower-volume links, the coefficient of variation is

more widely distributed, with some local roads and small collectors having considerably higher values. Some

links in the model show no variation at all; these are presumably links near the edges of the model region

where the only traffic is to and from external zones, trips which were held constant in this framework.

Variation among a link can also be visualized with a density plot of the total volume across all iterations,

as shown in Figure 6. In this plot, the density of forecast volumes in three randomly selected links in each

of the freeway, collector, and arterial functional types are plotted alongside the baseline forecast and the

Average Annual Weekday Daily Traffic (AAWDT) measured by the Virginia Department of Transportation,

and to which the model estimates were calibrated. In all cases, the error or uncertainty in the forecast is

considerably narrower than the error inherent in the model construction, as evidenced by the fact that the

AAWDT target value is well outside the bell curve created by the statistically varied simulation forecasts.

As expected from using the base parameter values as the mean of the LHS parameter sampling, the base

results are at or near the median of the statistical density for each link’s volume. But it is notable that
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Figure 5: Coefficient of variation in daily link volume by facility type for a random sample of highway links.
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the estimated volumes are not perfectly, normally distributed as might be naively expected. In this case,

the combined effects of the mode and destination choice parameter sampling appear to be constrained by

the geographic specificity of the RVTPO model network: even when the demand for trips changes between

zone pairs, the realities of the highway capacity, volume-delay, and static user equilibrium procedures may

be limiting the possibilities for forecast highway volumes.
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Figure 6: Density plot of forecast volume on selected links, with default parameter results marked in red, and AAWDT values

in green.

5. Conclusions

In general, this research has shown that statistical parameter uncertainty does not appear to be a significant

factor in forecasting traffic volumes using trip-based travel demand models. The result uncertainty is

generally equal to or smaller than the input parameter variance. The uncertainty in parameter inputs

appears to lead to variation in highway volumes that is lower than the error between the model forecast and

the highway counts. Any variation in mode and destination choice probabilities appears to be constrained

by the limitations of the highway network assignment.
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There are several limitations that must be mentioned in this research, however. First, we did not attempt

to address the statistical uncertainty in trip production estimates; these may play a substantially larger

role than destination and mode choice parameters, given that lower trip rates may lead to lower traffic

volumes globally, which could not be “corrected” by the static user equilibrium assignment. Additionally,

the relatively sparse network of the RVTPO model region — lacking parallel high-capacity highway facilities

— may have meant that the static network assignment would converge to a similar solution point regardless

of modest changes to the trip matrix. It may be that in a larger network with more path redundancies, the

assignment may not have been as helpful in constraining the forecast volumes.

In this research we had only the estimates of the statistical coefficients, and therefore had to assume a

coefficient of variation to derive variation in the sampling procedure. It would be better if model user and

development documentation more regularly provided estimates of the standard errors of model parameters.

Even better would be variance-covariance matrices for the estimated models, enabling researchers to ensure

that covariance relationships between sampled parameters are maintained.

Notwithstanding these limitations, statistical parameter variance does not appear to be the largest source

of uncertainty in travel forecasting. There are likely more important factors at play that planners and

government agencies should address. Research on all sources of uncertainty is somewhat limited, but in

many ways has been hampered by the burdensome computational requirements of many modern travel

models (Voulgaris, 2019). This research methodology benefited from a lightweight travel model that could

be repeatedly re-run with dozens of sampled choice parameters. One strategy for applying this methodology

to larger models may be relatively recent TMIP-EMAT exploratory modeling toolkit (Milkovits et al., 2019).

But a better understanding the other sources of uncertainty – model specification and input accuracy –

might also benefit from lightweight models constructed for transparency and flexibility rather than heavily

constrained models emphasizing precise spatial detail and strict behavioral constraints. This might allow

forecasts to be made with an ensemble approach (Wu & Levinson, 2021), identifying preferred policies as

the consensus of multiple plausible model specifications.
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